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One of the basic postulates of physics is that space-time is to be described using 
a (3+ 1)-dimensional real geometry. Within this geometry, the complex space 
of quantum mechanics is defined. Recently R. Mirman has shown that the 
geometry of space-time is determined by this relationship between the real and 
complex descriptions of reality. In the present paper, further justifications are 
given for Mirman's arguments. 

1. I N T R O D U C T I O N  

Why does physical reality appear  to us as a (3 + 1)-dimensional real 
space? Mirman has investigated this question in a recent series of  papers 
(Mirman 1984, 1988a, b). He begins with the following observation. Physical 
space can be thought of  in two different ways. First there is the real space 
of normal experience, and then there is the complex space of quantum 
mechanics. The symmetries of  space can be described on the one hand in 
terms of  real coordinates, and on the other hand in terms of complex ones. 
Thus, there should be an isomorphism between the Lie algebras representing 
the real and the complex descriptions. Which pairs of Lie groups admit 
isomorphisms of their algebras? This is a classical question which has long 
ago been answered. Barut and Raczka (1965) provide a table of  all possible 
isomorphisms involving real, simple Lie groups. We are only interested in 
the isomorphisms which relate groups acting on complex vector spaces to 
groups acting on real vector spaces. Here is the list of  all such isomorphisms. 
(I retain their convention for assigning names to the groups. Note that Barut 
and Raczka leave out the trivial cases in two real and one complex 
dimension.) One has 

NU~ ~- NR~ (1.1) 
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SU2 ~- R3 (1.2) 

SL(2, C)  ~- N R  3 (1.3) 

SU2|  SU2 "~ R4 (1.4) 

N U ] =  N R  4 (1.5) 

SU4 ~ R6 (1.6) 

The isomorphisms (1.2) and (1.3) are of course familiar to anyone who 
has glanced at the beginning of  any book on quantum field theory. The last 
three isomorphisms do not usually appear there, although (1.4) is sometimes 
mentioned. Also, many other groups, such as SU3, do not appear at all. 
What is the meaning of this? 

One way of approaching this question is to make a list of requirements, 
or axioms, which isolate the first three isomorphisms on the list. For example: 
(A) We are interested in isomorphisms of real Lie algebras relating symmetry 
groups of real spaces to symmetry groups of complex spaces. (B) The 
complex symmetry group must be simple. (C) If  a symmetry group of a 
real space is on the list, then the corresponding symmetry group of every 
possible real subspace is also on the list. 

In the rest of this paper I will attempt to justify these three requirements. 
In doing so, I will depart somewhat from the arguments of Mirman. 

2. THE CORRESPONDENCE PRINCIPLE 

We will be concerned with a correspondence between the idea of space 
in terms of  real numbers and space in terms of  complex numbers. Sixty 
years ago, when the theory of quantum mechanics was first formulated, 
people tried to justify the quantum mechanical (complex) description in 
terms of a number of very general philosophical principles. In particular, 
great importance was given to the so-called "correspondence principle." 
The idea was that although the theory of quantum mechanics is supposed 
to supersede the old theory of classical mechanics, nevertheless the 
framework of classical mechanics is still necessary in order to describe the 
theory of quantum mechanics. It is an unfortunate fact that most people 
avoided a precise description of this correspondence between the old and 
new theories, preferring to emphasize the revolutionary nature of the new 
theory. 

If we are to examine sensibly the correspondence between various Lie 
algebras, then it is necessary to understand the correspondence principle, 
and this involves investigating the interpretation of quantum mechanics. 
Now, as Ballentine (1970) has shown, the controversy which surrounded 
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the original formulation of  the theory of quantum mechanics led essentially 
to two different interpretations. The "Copenhagen interpretation" of Bohr 
and Heisenberg is well known. The skeptics of those days--Einstein,  
Schr6dinger, and so for th- -could  not accept this interpretation. But this is 
not to say (as was sometimes represented by the Copenhagen school) that 
they rejected quantum mechanics itself. On the contrary, they accepted it 
as a statistical theory- -on  a par with any other statistical theory. This is 
the meaning of Einstein's often misunderstood statement that quantum 
mechanics is "incomplete."  By its very nature, the theory of statistics deals 
with situations where the details are unknown; if all details were completely 
known, then one would have no need to bring in statistics in the first place. 
Thus, in a trivial sense, all statistical descriptions of reality must be incom- 
plete. By arguing in this way--but  without being able to describe a concrete 
mechanism for the strange new quantum interference effects--the adherents 
of this early "statistical interpretation" were at a disadvantage in their 
dispute with the Copenhagen school, who simply maintained that the 
statistical calculation was everything. In the present paper I will adopt the 
statistical interpretation. Not only does it lend itself to a more rational 
understanding of physics, but also it provides a natural explanation of  the 
reasons for the assumptions (A), (B), and (C). 

Classical mechanics and quantum mechanics are two different theories 
which are concerned with describing two different aspects of the physical 
world. The goal of classical mechanics is to describe a given and fixed 
sequence of events. Quantum mechanics is concerned with statistics. Statis- 
tics, in turn, has to do with the results of  repeatable experiments; certain 
conditions are taken as given and fixed--the experimental condi t ions--and 
within the framework of  a given experiment, various different results are 
possible. For example, one possible experiment might be to measure the 
air temperature at 9 a.m. every morning at some particular weather station. 
Looking at the situation from the point of  view of classical mechanics, the 
problem would be to explain why some precise temperature, say 19~ was 
measured on a particular day, say 1/1/1980. Perhaps on the next day an 
accident occurred so that the thermometer tipped over, invalidating the 
experiment on that day. But this is irrelevant when we are concerned with 
describing the one particular result within the classical framework. The 
quantum mechanical - -or  statistical--view of  reality is different. Here certain 
things are taken as given and fixed: the thermometer must be working 
properly, the measurement is always at 9 a.m., and so forth. If the conditions 
are not precisely fulfilled, then the experiment is considered invalid for that 
day, and the measurements are discarded. These conditions, being fixed, 
can be described in terms of the given "classical" world. The unknown 
quantity which is being measured can take on arbitrary values without 
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invalidating the experiment. This is the " q u a n t u m " - - o r  statistical--world. 
One sees then that the theory of statistics, which has been the subject of  
mathematical  investigation for hundreds of  years, requires a "correspon- 
dence principle." The fixed conditions of  the experiment correspond with 
the known classical world. The unknown values which are being measured 
can be described using the "nonclassical" laws of  mathematical  statistics. 

Of  course we need more than this in order to understand quantum 
mechanics. The wavelike statistical effects of  quantum mechan ics - -  
described in terms of complex "ampl i tudes" - - seem to be difficult to explain, 
at least when thought about  in the f ramework of  the old mathematical  
models which were used to describe classical statistical mechanics. Else- 
where I have given arguments to support  the idea that these statistical laws 
can arise from an underlying classical model which is discrete, rather than 
continuous (Hemion,  1988). A different derivation, also based on the idea 
of an underlying discrete model,  is to be found in Land~ (1965). But whatever 
justification one prefers to give to these statistical laws of  quantum 
mechanics,  the fact remains that the argument can be based on the old 
"correspondence principle" of  statistics. 

We are concerned here with the correspondence between a description 
of  the world in terms of  real and complex numbers. I will argue that the 
real description is the "classical" description, in the sense that "experimental  
condit ions" of  typical quantum mechanical experiments are best formulated 
in terms of  real numbers. The results of the experiments can most easily be 
understood in terms of a statistical calculation involving complex numbers. 

3. THE " R E A L "  W O R L D  OF FIXED C O N D I T I O N S  

Consider some typical "exper iment"  in a physics laboratory. The 
experiment involves measuring repeatedly some definite process. For 
example,  one common type of experiment is to let particles travel through 
a bubble chamber,  and the positions of  the tracks they leave are then 
determined. The positions might be measured using a camera attached to 
a fixed framework, which in turn is resting firmly on the floor of  the 
laboratory. All of  these conditions are necessary in order to have a valid 
run of the experiment. When thinking about  the experiment, the " f rame of 
reference" within which the measurements are made is naturally related to 
the material objects from which the experiment is constructed. For example,  
the abstract idea of  a "coordinate axis" is perhaps, in reality, a massive 
and stable metal girder in the laboratory. 

Now all of  the physical details of  the girder are unimportant  for the 
purpose of defining a coordinate axis. The axis is given by two po in t s - - say  
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two fixed measurement  points on the apparatus.  Perhaps a careful 
experimenter  may even decide to relate the whole experiment to four known 
survey points in the neighborhood. But what are these points? They are 
related to very stable material objects which appear  to remain well fixed 
for long periods of  time. Surely any sensible person would agree that this 
is the reality behind the abstract idea of  a " f rame of reference." Events 
within the physical world are related to some finite number  of  points defined 
in terms of physical objects. 

Consider one of these reference points. Being stable, it remains well 
defined throughout the time the experiment is being run. Thus, the point 
defines a path through time (a "world-line").  Since the path is part  of  the 
definition of  the experiment, it must be sufficiently long to allow it to be 
used to measure all possible runs of  the experiment. What is the most direct 
way to relate events in the physical world to the word-lines which define 
the experiment? Surely the most natural answer is to take the points of  
intersection with the null light-cone from a given event. For simplicity we 
can just take the light-cone above the event. Now each world-line can be 
parametrized using the real numbers. Thus, each event in the real world is 
assigned a unique real number  for each word-line used to define the 
experiment. I f  we happen to choose four different world-lines, then we have 
four spatial coordinates. But at this stage there is nothing special about the 
number  four. Taking n world-lines gives n real coordinates. In this way we 
obta in--wi th in  the context of  the given exper iment - -a  Euclidean coordinate 
system of some finite dimension. (Note also that this idea allows a natural 
definition of "coordinate  neighborhoods."  A given experiment involves a 
certain local Euclidean coordinate system. But one may decide to concen- 
trate on another  aspect of  the world, which then becomes another "experi-  
ment" - -b r ing ing  with it another  local coordinate system. A large system of 
local coordinate systems could be built up, allowing complicated global 
structures.) 

Why choose the light-cone structure for defining real coordinates, and 
why are we allowed to parametrize the world-lines using real numbers? 
Some readers may object that in doing this we are implicitly bringing in 
many new concepts: light, electromagnetism, the Dirac theory, etc. But is 
this true? It may be better to argue that when talking about light-cones, 
one is really talking about  causal structure. Independent  of all experiment,  
one could claim that the events of  the physical world must form a partially 
ordered set. Physical laws, even reason itself, has to do with the idea of  
cause and effect. I f  one event is part  of  the cause of another, then it must 
come before it in time. This causal structure then is the basic reason why 
real numbers are relevant in the study of physical space. Each world-line 
must be a totally ordered set. 
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Finally it might be interesting to compare this with Newton's point of 
view. In his work he proposed a new frame of reference--in contrast to the 
"common people," who think of themselves only with respect to the material 
objects which they perceive. His framework is an abstract and imperceptible 
framework which he called "absolute space." But this point of  view is 
completely opposed to the framework for real space which has been 
described in this section. Newton's absolute space would be useless if it 
contained no material objects. On the other hand, the space of  world-lines 
of material objects can be defined without reference to an absolute space. 
Hence this "common"  space is the simple and more basic concept. 

4. THE " C O M P L E X "  WORLD OF QUANTUM MECHANICS 

The quantum mechanical world, dealing with the results of  experiments, 
cannot be justified in terms of commonplace reasoning, as was done in the 
previous section for the real world. But despite this, I will argue that it is 
the complex world which Comes first, determining the structure of real space. 

Why can the statistical results of experiments be best described using 
the language of probability "amplitudes," states, transition probabilities, 
and all the rest? Perhaps some readers will be happy to accept these laws 
of  quantum mechanics as being basic "laws of  nature" which are beyond 
the reach of further human inquiry. In that case, or if one has some other 
method of  understanding quantum statistics, then one can simply skip to 
the beginning of the next section and follow the argument from there. 

However, in Hemion (1988) I attempted to justify the statistical laws 
of  quantum mechanics in terms of ensembles of discrete, partially ordered 
sets. The idea was that quantum statistics must arise in just the same way 
as any other statistical phenomenon. The simplest way to describe this is 
to use the classical coin-flipping "experiment." What are the odds that if 
you flip a coin starting from now, the first three throws will result in heads? 
The theory of statistics tells us that the answer is 1 in 8. What reasoning 
leads to this answer? In the theory of statistics one begins by listing all 
possible different outcomes. The physicist may prefer to think of  this as 
being many different "universes" or "worlds." Each of the possible outcomes 
is associated with a possible world. (Or, more realistically, a great ensemble 
of possible different worlds.) The main premise of the theory of statistics 
is that all of  these possible worlds are equally likely. Thus, the probabilities 
are obtained by simple counting arguments. Now, to be quite clear on 
this-- to avoid all confusion with one or another kind of philosophical 
"interpretat ion" of  quantum mechanics--I  will list here the basic assump- 
tions of the theory of statistics, as it is taught in any faculty of mathematics. 

I. Begin by defining precisely the conditions of the "experiment."  
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II. Make a list of all possible outcomes of the experiment. 
III. Assert that all of  these outcomes are equally likely. 
IV. The actual experiment, once performed, is known, and is thus no 

longer relevant to the theory of statistics. 

In particular, the reader should note that in order to deal with point 
II, the theory of statistics does not require the concept of a treelike world, 
splitting into countless branches. Also, point IV does not involve the concept 
of statistical calculations "collapsing" with each run of an experiment. 
Although the theory of  statistics involves the consideration of all possible 
worlds, still, it does not deny that the underlying object is one single given 
world. The detailed properties of this actual world cannot be investigated 
using the theory of statistics. 

What is this actual world? Why are we confronted with an "uncertainty 
principle" which foils our attempts to investigate it more precisely? My 
argument was that this is due to the fact that the actual world is discrete. 
I a t tempted--unsuccessful ly-- to  find reasons for the perceived ( 3 + l ) -  
dimensional structure of the real world in terms of some definite geometric 
properties of  an underlying discrete space. Certainly, if one could show 
that all possible worlds are 3 + 1 dimensional, then it would follow trivially 
that the actual world is also 3 + 1 dimensional. But in view of Mirman's 
arguments, it is clear that the converse is not necessary: although we perceive 
a (3 + 1)-dimensional world, this does not necessarily imply that all possible 
worlds--or  indeed the actual world--is also 3 + 1 dimensional. All we can 
conclude is that something near to the (3 + 1)-dimensional structure appears 
to be likely. 

Given that the actual world is discrete, how does that fit in with the 
framework of  the "real"  world described in the previous section? The 
conditions of  a given experiment are to be related to world-lines, which are 
parametrized using the real numbers. Now each possible world--including 
the actual world--is  assumed to be discrete. Thus, one could easily ask, 
"Why not parametrize the world-lines with a discrete number system: the 
integers?" To answer this question, one should remember that the discrete- 
ness of a world-line can only be defined with respect to the given conditions 
of  the experiment; that is, with respect to other discrete world-lines. That 
means that the discreteness must become a part of the definition of the 
experiment. An experiment which is so defined would involve "phase 
correlations" between its defining world-lines. Now such an experiment 
can certainly be imagined, but this hardly reflects the usual practical condi- 
tions in a physics laboratory. No such phase correlations are assumed, and 
thus we are forced to assume that the world-lines have arbitrarily fine 
structure. This, then, is the justification of the real parametrization. 
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In Hemion (1988) I only discussed the simplest possible case of a 
quantum experiment with no spin. The results of such an experiment are 
described using a single complex function: the "amplitude." Now, van der 
Waerden (1972) shows how (in the nonrelativistic theory) the spin of a 
particle can be described in terms of  two complex functions, a spinor. One 
term of the spinor describes the statistical probability that a particle appears 
at a given point with spin up. The other term describes the situation for 
spin down. But each of these two cases can be considered alone, and the 
same argument as before, using the discreteness of the underlying space, 
explains the use of the complex function. It is usual to relate these complex 
functions immediately to an underlying (absolute) real space, arguing that 
orthogonat coordinate transformations of that space lead to unitary coordin- 
ate transformations in the complex space. 

The two component  spinors give a 2-dimensional complex space. This 
leads in the usual theory to the basic correspondence S U ( 2 ) ~  0(3) .  But 
why must we restrict ourselves to just two complex dimensions? It is true 
that only 2-dimensional complex spaces occur in the relations (1.1)-(1.4). 
[The relations (1.5) and (1.6), which admit a 4-dimensional complex space, 
will be ruled out using requirement C.] But that would be getting ahead of 
ourselves. There seems no reason to make the ad hoc rule that complex 
space must be 2-dimensional. Just as we have done for the real case, it is 
better to allow experiments which-- to  begin with at least--could have 
particles with arbitrarily many components of (iso)spin. [Note that this idea 
might be related to the work of Gudder  (1985).] 

Why should the complex space be considered as being more "basic" 
than the real space? One way to answer this question would be to simply 
follow the traditional line of quantum mechanical philosophy and declare 
that we are not interested in describing the normal world of everyday 
experience; according to this view, it is necessary to restrict all attention to 
stylized "experiments"  which are only allowed to occur in physics 
laboratories equipped with well-defined "observers." But surely no one is 
satisfied with this. The interesting question must be, Why does the everyday 
world seem to be so strongly governed by quantum mechanical (that is, 
statistical) laws? To give an example [which was also discussed by Land~ 
(1965)], many people have life insurance policies. Their lives are thus 
governed by certain actuarial laws. But the perceived reality which each 
person experiences could hardly be described in any detail by a knowledge 
of these statistical "laws of  nature"! 

Now if we argue that the actual world behind the statistical world is 
to be described using some definite (not just statistical) rules, then the 
question must be asked, why don' t  we see these rules? Retreating to a 
simple declaration that science should only be concerned with "repeatable 
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experiments"  is no help. It seems better to argue as follows. Our perceptions 
of  the world are always in the present. The present can be thought o f - - in  
a very general sense- -as  being a state of  knowledge. Given this state of  
knowledge, the future brings us then new bits of  knowledge, which, to make 
sense of  it, we must relate to the already given knowledge. We are concerned 
here with geometry, so this knowledge can be reduced to the everyday idea 
of  objects, or points, in real space. Given a certain state of  real geometrical 
knowledge, then this can indeed be thought of  as being an "exper iment"  
in the sense of  quantum mechanics. The fact that our knowledge is incom- 
plete (perhaps because the underlying, actual world is discrete) means that 
many different possible worlds are compatible with that knowledge. Thus, 
even though we exist in a single definite world, nonetheless our perceptions 
are governed by statistical effects. Certain actual observations, which may 
be statistically unlikely, are attributed to "quan tum fluctuations." Being 
unlikely, they are difficult to fit in to our normal experiences of  the real 
geometric world. But of  course such fluctuations are an essential part of  
any statistical model. 

5. J U S T I F Y I N G  T H E  T H R E E  A S S U M P T I O N S  

Begin with assumption A, that the geometry of physics must admit an 
isomorphism of  real Lie algebras relating symmetry groups of real spaces 
to symmetry groups of complex spaces. There are two questions. (i) Why 
should there be an isomorphism, and (ii) why take real (rather than complex) 
algebras? 

Consider question (i) first. The traditional argument here is that the 
spaces simply have "symmetr ies ."  What does this mean? Spaces are given 
in terms of coordinates. One then says that the choice of  coordinates was 
arbitrary, so let us take some other choice. Since one single space is being 
described, there must be a symmetry. Now it is clear that this argument is 
based on the idea of "absolute"  space. I f  one takes the common everyday 
space of  true physical reality, relating the geometry to given material objects, 
then much of the arbi t rar iness--and with it the symmetr ies- - in  the descrip- 
tion of geometry disappears. Thus, it is necessary to describe more carefully 
the extent to which arbitrary choices are made, both in the real and in the 
complex description. 

Choose some fixed experiment. The results of  the experiment can be 
related to a system of real coordinates defined in terms of some finite system 
of world-lines. Let, say, P be some definite result of  the experiment. Then 
P can be taken as a point in an m-dimensional  real Euclidean space. (For 
simplicity choose the parametrization of the world-lines in such a way that 
P is assigned the zero point.) Other possible results of  the experiment can 
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also be considered. These other results can be assigned real coordinates in 
some neighborhood of P. (Perhaps the experiment is only valid in a limited 
neighborhood.)  

Now each of the results has some definite probabili ty which is to be 
calculated using complex "ampl i tude"  functions. The arguments which 
justify these complex functions [both in Land6 (1965) and Hemion (1988)] 
are based on the idea of trying to find " smooth"  functions which approxi- 
mate as nearly as possible nonsmooth (discrete) measurements.  This cer- 
tainly implies that the complex amplitude functions must vary smoothly 
within the real space of  possible results. Around P, then, the complex 
functions can be represented by a mapping O : K ~ R m, where K c C n is 
some subset of  n-dimensional complex space and R m is m-dimensional 
real space. Using the smoothness of O, we can choose K to be sufficiently 
small that "9 is diffeomorphic to the tangent mapping at P. It is sensible to 
assume that O is one to one; otherwise, more than one probabili ty would 
be assigned to a single experimental resul t - -which would clearly be non- 
sense. The image of the mapping z9 might be a proper  subspace of R m, but  
in this case we have chosen too many world-lines; some number  of  them 
can be discarded and we still are able to distinguish all possible different 
results. In summary,  then, ,9 is assumed to be both one to one and onto. 

But now we can return to the conventional arguments. We have chosen 
the real coordinates as being simply the path lengths along the world-lines 
which define the experiment. These real coordinates define a Euclidean 
neighborhood of P. Of  course, we may equally well choose any other real 
coordinate system which can be obtained from the original one by some 
linear transformation;  the choice is just as arbitrary as in the usual f ramework 
of "absolute space." Therefore, the same arguments as usual lead to the 
requirement that there must be an isomorphism of Lie algebras. But note 
that the freedom of choice involves the coordinates of  the real space, defining 
the conditions of  the experiment. This is the reason for taking real Lie 
algebras, rather than complex ones. The fact that the complex space only 
has meaning within some given and fixed exper iment - - tha t  is, some real 
coordinate sys tem--means  that (within this f ramework at least) one cannot 
give a physical interpretation to the idea of isomorphisms of complex Lie 
algebras. (In the next section I will relate this to the Clifford algebra 
formalism, where the complex numbers are given a purely geometric 
meaning.) 

The next task is to justify assumption B, which is that the complex 
symmetry groups should be simple. But Mirman has already provided the 
justification in this case. I f  the experimental results were to allow a decompo-  
sition into a number  of  independent  subspaces, then it would be as if there 
existed various " 'parallel" worlds which are independent  of  one another. 
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Such worlds must be - -a t  least within the context of a given quantum 
theory--invisible to us, and should therefore play no role in that theory. It 
may be that different kinds of phenomena can be best described using 
separate statistical calculations; for example, interactions involving the 
strong force might at first be best calculated independently of the electromag- 
netic "world"  which we see. Thus, we start with two different ideas of the 
world: the "normal"  world of electromagnetism, and the "strange" world 
of"isoT" space. If  there were no points of contact between these two different 
worlds, then it would be best to say that the "iso-" space world simply does 
not exist. In fact, though, charged particles may suddenly appear or dis- 
appear, thus making themselves known in the "normal"  world. Does the 
existence of  such apparently " independent"  forces of nature invalidate 
the principle that the complex symmetry groups should be simple? No. 
For the symmetry is in the statement of the experiment in the real world. 
The experiment, and the experimental measurements, can only be formu- 
lated in terms of  what can be directly experienced; that is, within the context 
of electromagnetic phenomena--wi th  respect to one single and coherent 
type of phenomenon. What we can directly see determines our idea of the 
geometry of space-time. Thus, it is only necessary to require simplicity with 
respect to the statistical functions related to this direct experience of  the 
world. 

Finally we must justify assumption C, which is that if a symmetry 
group of a real space is to be considered, then the corresponding symmetry 
group of every possible real subspace is also to be considered. But the 
justification of  this assumption is simple. If an experiment is given in terms 
of  n different world-lines, then it is perfectly possible to define another 
experiment by simply ignoring one of these world-lines. This new experiment 
must be well defined if the original experiment was. Furthermore, the 
statistical properties of the set of possible results can equally well be 
calculated in terms of  complex amplitude functions. 

To summarize, given that the complex amplitude functions can be 
interpreted using a statistical framework, then justifications for the three 
assumptions seem to follow easily. We have not examined the fundamental 
correspondence between the Poincar6 group and the inhomogenenous 
SL(2, C) [see, for example, Streater and Wightman (1964)]. But this violates 
each of our three assumptions, so it is difficult to justify it directly in terms 
of the arguments presented here. The fact that we have chosen afixed point 
P and related that to the statistical calculations in a fixed experiment means 
that the symmetries leave P fixed. On the other hand, this isomorphism can 
be derived from the given isomorphisms of real, simple algebras by using 
the classical method of  Wigner (1939). The usual idea is that physical 
theories themselves contain symmetries. But in contrast, the argument here 
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is based on the idea that quantum theory, being a theory of statistics, can 
only be given meaning in the context of  given fixed experiments. These 
fixed experiments are defined in terms of the real world, whose description 
is subject to symmetries. 

6. THE CLIFFORD A L G E B R A  F O R M A L I S M  

Up until now, we have been concerned with explaining why the 
geometry of the physical world is determined by the fact that space should 
be described in terms of real and complex numbers. Although it is often 
maintained that the complex formulation is the essence of quantum 
mechanics, nevertheless it is possible to formulate the Dirac equation in 
terms of a Clifford algebra (or geometric algebra) over the real numbers 
(Hestenes, 1975). The imaginary number  ~ is given a new interpretation 
in this theory. It is no longer to be considered as a pure number  (a scalar), 
but rather it is represented by a Clifford number  whose square is -1 .  In 
Hestenes '  theory, this number  represents a unit volume in space-time. Using 
this formalism, it is possible, at least in a formal sense, to do away with 
the idea of two different descriptions of the world: the real and the complex 
descriptions. They are replaced with a simpler unified description in terms 
of real numbers alone. It is an interesting exercise to see how the present 
arguments can be applied to the Clifford algebra formulation. The necessary 
mathematical  f ramework is developed in Hestenes and Sobczyk (1984). 

The basic idea is that a spinor is no longer taken to be a complex 
vector. Instead Hestenes defines a spinor [in the geometric algebra ~(~p,q) 
of  (p + q)-dimensional  pseudo-Euclidean space] to be an even multivector 
q, with the property that for all vectors x in that space, ~px~b * is also a vector. 
Since spinors are usually taken to describe the quantum mechanical prob- 
abilities, it follows that it is also necessary to examine the structure of 
spinors in this new theory. Now spinors are elements of  Spin+ (p, q), the 
rotor group of ~p.q. Thus, a given spinor ~ generates the rotation q,x~b*. 
Hestenes and Sobczyk show that for spaces with Euclidean or Lorentz 
signature [i.e., (1, q) or (p, 1)], every rotor can be expressed as a commuting 
product  of  simple rotors. A simple rotor S, in turn, is a product of  two unit 
vectors 

S = a b = a .  b + a ^ b  

with S*S = a2b 2 = 1. 

I f p  + q < 4, then any spinor is a simple rotor. Also, in ~3,1 each spinor 
must be a simple rotor. This follows since either a 2 = b 2 = 1. or a 2 = b 2 = - 1  
is impossible for a nontrivial rotor in a Lorentz space. On the other hand, 
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in 4-dimensional Euclidean space there do exist spinors which can be 
decomposed into the commuting product of two nontrivial simple rotors 
(just take two pairs in an orthogonal set of  basis vectors for ~4). Also, for 
all spaces ~,.q, with p +  q > 4, there exist spinors which are nontrivial 
commuting products of simple rotors. To summarize, then, 3 + 1 dimensions 
is the most that a space can have if we want to ensure that spinors are 
"simple"-- i .e . ,  cannot be decomposed into commuting products of simpler 
spinors. But the requirement that spinors should be simple can be justified 
on the same grounds as those used to justify assumption B above. 

There is still one point to be cleared up, though. Within the Clifford 
algebra framework the spaces ~p,q, with both p and q greater than one, 
have not yet been ruled out. But for this it seems best to establish a more 
general result--namely that there should be at most one dimension of time. 
In Dorling (1970) it was argued that time must be 1-dimensional, since 
otherwise the path lengths of timelike particle world-lines could not be 
extremal. Thus, physics in terms of variational principles would be imposs- 
ible. Now this argument is certainly convincing. Nevertheless, the main 
idea of the present paper is that we should try to divest physics of as many 
abstract principles as possible. 

I have already brought in the principle of cause and effect in order to 
justify the use of real numbers for describing experiments. But this principle 
is also sufficient to eliminate all spaces with more than one dimension of 
time. For if any such space is given, then it must contain (2 + 2)-dimensional 
space. (If  space-time is assumed to be curved, then one may take here the 
tangent space to a given point.) Thus, we need only show that in 2 + 2 space 
there must exist distinct points P and Q such that each lies in the future 
set of the other. For simplicity, take P = (0, 0, 0, 0) c R 2'2. Then the set of 
points Vp, with vanishing pseudo-Euclidean distance to P, forms a "light- 
cone" structure in R 2'2. The different connected regions of R2"2--Vp m u s t  

represent points of space-time which are all in the same causal relationship 
to P. Ascending from P to the point A = (0, 0, 0, 1), we travel forward in a 
straight line through the second " t ime"  dimension, so that surely we would 
be justified in saying that P < A. However, from the point A, one can travel 
one unit directly backward in the first time dimension, following a straight 
line to reach the point Q = (0, 0, -1 ,  1). Let LAO be the straight line segment 
joining A and Q. Then LAO ~ Vp = ~.  Hence P < O. But now we can find 
a similar path from P to Q, but going into the past and thus showing that 
Q<P. 

Finally it is interesting to note that a spinor, which describes the 
electromagnetic field in the Dirac theory, is essentially 2-dimensional. But 
this leaves ~3.1, a 4-dimensional space, with a number of "degrees of 
f reedom" still unaccounted for. The point is examined in Hestenes (1982), 



1384 Hemion 

where it is shown that the extra structure is just what is needed to describe 
the weak force. This provides a simple and unified descript ion--within the 
context of  the Dirac t h e o r y - - o f  the electroweak force, on the same level of  
mathematical  unification as was achieved by Maxwell 's theory in unifying 
the electrical and magnetic forces. 

7. THE " L A W S "  OF PHYSICS 

The physical world is clearly very complicated. In order to make sense 
of  things, people try to understand physics in terms of abstract rules which 
are considered to apply to all objects. This idea that there must exist basic 
"laws of nature"  is surely the cornerstone of science itself. The search for 
these laws has obviously led to great progress in understanding the physical 
world. Thus, the concept of  an abstract "physical  law" is a useful one. But 
by the same token, the development  of physics has shown that no law which 
has yet been formulated has proven to be very satisfactory. Are we justified 
in looking for some final, absolute "law of nature" which will be accepted 
as such by all future generations? This absolute quality is given for mathe- 
matical theorems, but the history of  science hardly gives encouragement  to 
the view that the physical world will ever be understood in a similarly 
absolute sense. 

For example,  the principle of relativity and the principle of  gauge 
invariance are accepted by almost everyone today as being basic "laws of 
nature." It is thought that these two laws can be easily understood and 
accepted as being of a basic, fundamental  character. On the other hand, 
most people are unhappy with the currently accepted, paradox-r idden 
interpretations of  quantum mechanics. Thus, all standard textbooks try to 
relate quantum mechanics to these two basic principles. But can an unbiased 
observer of  the history of science believe that these foundations are of  a 
truly fundamental ,  unshakable nature? 

Take the principle of  relativity. In a sense, it is an attempt to get away 
from Newton's  "absolute space." The practical problem was to explain the 
negative results of  the Michaelson-Morley experiment in view of Maxwell 's  
idea of  an absolute space, which he chose to call the "ether."  The principle 
of  relativity is that the physical world is invariant with respect to different 
choices of  ether (or absolute space). This idea is now so universally accepted 
that it is difficult to imagine why people were reluctant to accept it at the 
beginning of this century. But the reality today is that we are faced in fact 
with the opposite problem. In a certain fundamental  sense, the measure- 
ments of  the cosmological background radiations are measurements of  the 
velocity of  the earth through the "ether."  Most people are happy to say 
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that they still believe in the principle of relativity, even though they admit 
that it only applies on a "local" scale of distances (whatever that is taken 
to mean), but surely a critical observer must be skeptical. 

But what a simplification will result if we accept relativity and gauge 
invariance as being mere consequences of the quantum mechanical descrip- 
tion! Given that the complex world is the more basic concept, then, as we 
have shown, the real geometry of the theory of  relativity must follow. Thus, 
the theory of relativity should n o t  be understood in terms of some absolute 
philosophical principle, involving vaguely postulated "frames of reference." 
Perhaps in the future, people will accept the idea that the principle of 
relativity is nothing more than a simple consequence of quantum mechanics. 

Of course the principle of gauge invariance (not just in the Abelian 
gauge theories) is also a basic consequence of the quantum mechanical 
description. Therefore both of these principles--relativity and gauge invari- 
ance--are of a secondary nature. It may be that the actual world behind 
the statistical world of quantum mechanics is governed by certain definite 
and absolute laws. But the fact that our experience of the world is dominated 
by its statistical character may mean that these definite laws will remain 
hidden, and in fact will remain unimportant for an understanding of the 
physical world. 
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